mTOR controls ChREBP transcriptional activity and pancreatic β cell survival under diabetic stress
نویسندگان
چکیده
Impaired nutrient sensing and dysregulated glucose homeostasis are common in diabetes. However, how nutrient-sensitive signaling components control glucose homeostasis and β cell survival under diabetic stress is not well understood. Here, we show that mice lacking the core nutrient-sensitive signaling component mammalian target of rapamycin (mTOR) in β cells exhibit reduced β cell mass and smaller islets. mTOR deficiency leads to a severe reduction in β cell survival and increased mitochondrial oxidative stress in chemical-induced diabetes. Mechanistically, we find that mTOR associates with the carbohydrate-response element-binding protein (ChREBP)-Max-like protein complex and inhibits its transcriptional activity, leading to decreased expression of thioredoxin-interacting protein (TXNIP), a potent inducer of β cell death and oxidative stress. Consistent with this, the levels of TXNIP and ChREBP were highly elevated in human diabetic islets and mTOR-deficient mouse islets. Thus, our results suggest that a nutrient-sensitive mTOR-regulated transcriptional network could be a novel target to improve β cell survival and glucose homeostasis in diabetes.
منابع مشابه
mTORC in β cells: more Than Only Recognizing Comestibles
The pathways regulating pancreatic β cell survival in diabetes are poorly understood. Here, Chau et al. (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201701085) demonstrate that mTOR regulates the apoptotic machinery through binding to the ChREBP-Mlx complex to suppress TXNIP, thereby protecting pancreatic β cells in the diabetic setting by inhibiting oxidative stress and mitochondrial dysfu...
متن کاملIslet ChREBP-β is increased in diabetes and controls ChREBP-α and glucose-induced gene expression via a negative feedback loop
OBJECTIVE Carbohydrate-response element-binding protein (ChREBP) is the major transcription factor conferring glucose-induced gene expression in pancreatic islets, liver and adipose tissue. Recently, a novel ChREBP isoform, ChREBP-β, was identified in adipose tissue and found to be also expressed in islets and involved in glucose-induced beta cell proliferation. However, the physiological funct...
متن کاملHepatocellular glycogenotic foci after combined intraportal pancreatic islet transplantation and knockout of the carbohydrate responsive element binding protein in diabetic mice
Aims The intraportal pancreatic islet transplantation (IPIT) model of diabetic rats is an insulin mediated model of hepatocarcinogenesis characterized by the induction of clear cell foci (CCF) of altered hepatocytes, which are pre-neoplastic lesions excessively storing glycogen (glycogenosis) and exhibiting activation of the AKT/mTOR protooncogenic pathway. In this study, we transferred the IPI...
متن کاملTherapeutic potential of genistein in ovariectomy-induced pancreatic injury in diabetic rats: The regulation of MAPK pathway and apoptosis
Objective(s): Genistein, as a phytoestrogen found in legumes, has several biological activities in general and anti-diabetic activity particularly. In this study, we investigated the effect of genistein on proteins involved in β-cell proliferation, survival and apoptosis to further reveal its anti-diabetic potential in the ovariectomized diabetic rat. Materials and Methods: We used three-month-...
متن کاملImpact of Magnesium Deficiency on Pancreatic β-Cell Function in Type 2 Diabetic Nigerians
Objective: Pancreatic b-cell dysfunction is described to be present at the diagnosis of type 2 diabetes mellitus (T2DM) and progressively deteriorated with disease duration. However, its progression is variable and potentially influenced by several factors. The Magnesium (Mg) deficiency mediates insulin resistance but reports regarding its role in pancreatic β-cell dysfunction are scarce and co...
متن کامل